900. The Reactions of Phenyl Radicals from the Photolysis of Acetophenone and the Strength of the $\mathrm{C}-\mathrm{H}$ Bond in Benzene.

By F. J. Duncan and A. F. Trotman-Dickenson.
The photolysis of acetophenone has been shown to be a convenient source of phenyl radicals whose rates of reaction with acetophenone, methane, cyclopropane, and isobutane have been measured. $D(\mathrm{Ph}-\mathrm{H})$ equals 102 kcal./mole.

The reactions of phenyl radicals in solution have been extensively investigated, particularly by Hey and his co-workers. No full kinetic study in the gas phase has been reported, probably because no convenient source of phenyl radicals was developed and because the necessary analyses were almost impossible without gas chromatography.

It was expected, by analogy with acetone, that the photolysis of acetophenone could be satisfactorily described by the following series of reactions:

$$
\begin{align*}
\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me}+\boldsymbol{h} \nu & \longrightarrow \mathrm{Ph}+\mathrm{CO}+\mathrm{Me} \tag{1}\\
\mathrm{Ph}+\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me} & \longrightarrow \mathrm{PhH}+\mathrm{R} \\
2 \mathrm{Ph} & \longrightarrow \mathrm{Ph} \cdot \mathrm{Ph} \\
\mathrm{Me}+\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me} & \longrightarrow \mathrm{CH}_{4}+\mathrm{R} \\
2 \mathrm{Me} & \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6} \\
\mathrm{Me}+\mathrm{Ph} & \longrightarrow \mathrm{PhMe}
\end{align*}
$$

The detection of benzene, toluene, biphenyl, methane, and ethane among the products was in agreement with this general scheme. When acetone is photolysed both methyl and acetyl radicals are first formed, as can be shown by the detection of products of acetyl at low temperatures. No signs that acetone yields acetyl can be found at temperatures as high as 250°; there is, therefore, no reason to write reaction (1) as a series of steps in this instance. Some evidence was found that the yield of products decreased at high pressures. The decrease was probably caused by the collisional deactivation of excited acetophenone molecules, but no precise actinometric work was done so that for the present purpose reaction (1) suffices. The nature of the radicals, R, is not known. Mixtures are presumably formed. It is only necessary to postulate that these radicals do not directly form any of the significant products.

Benzene and biphenyl could have been formed by reactions of the photolytically activated acetophenone that do not involve phenyl radicals as an intermediate. The results for the rate of formation of benzene and biphenyl when acetophenone (approx. 10^{-6} mole $\mathrm{cm} .^{-3}$) is photolysed at 330° in the presence of nitric oxide show that the additive acts as if the products came solely from phenyl radicals. Accordingly the rate of formation of benzene can be written:

$$
R_{\mathrm{PhH}}=k_{2}[\mathrm{Ph}][\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me}]
$$

and that of biphenyl

$$
R_{\mathrm{Pb} \cdot \mathrm{~Pb}}=k_{3}[\mathrm{Ph}]^{2}
$$

Similar equations were derived to describe the formation of methane and ethane in the photolysis of acetone and are applicable also to the products of methyl radicals from acetophenone. Biphenyl is, however, also produced by the reaction:

$$
\begin{equation*}
\mathrm{Ph}+\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me} \longrightarrow \mathrm{Ph} \cdot \mathrm{Ph}+\mathrm{CO} \cdot \mathrm{Me} \tag{7}
\end{equation*}
$$

Hence, from a steady-state treatment

$$
\frac{R_{\mathrm{Ph} \cdot \mathrm{Ph}}}{R_{\mathrm{PhH}}}=\frac{k_{3}}{k_{2}{ }^{2}} \cdot \frac{R_{\mathrm{PhH}}}{[\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me}]^{2}}+\frac{k_{7}}{k_{2}}
$$

A plot of ($R_{\mathrm{Ph} \cdot \mathrm{Ph}} / R_{\mathrm{PhH}}$) against ($R_{\mathrm{PhH}} /[\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me}]^{2}$) should be a straight line of slope $k_{3} / k_{2}{ }^{2}$ and intercept k_{7} / k_{2}. Plots of this type were first obtained by the addition of nitric oxide to acetophenone at 327°. The points lay roughly on a line but the scatter was large. Work was subsequently confined to variations of the acetophenone concentration. The results are given in Table 1 and plotted in Fig. 1. The values of k_{2} and k_{7} are:

Temp. (${ }^{\circ} \mathrm{K}$)	550	599	615	680
$10^{-8} k_{2}\left(\mathrm{~mole}^{-1} \mathrm{~cm} .^{3} \mathrm{sec} .^{-1}\right)$	$15 \cdot 7$	$29 \cdot 3$	$23 \cdot 7$	44-4
$10^{-8} k_{7}\left(\mathrm{~mole}^{-1} \mathrm{~cm} .{ }^{3} \mathrm{sec} .{ }^{-1}\right)$	$0 \cdot 15$	$0 \cdot 29$	$0 \cdot 23$	$0 \cdot 44$

From these figures, the values of the A factors and activation energies listed in Table 3 have been calculated on the assumption that $\log k_{3}\left(\mathrm{~mole}^{-1} \mathrm{~cm} .{ }^{3} \mathrm{sec} .^{-1}\right)=14$ and that $E_{3}=0$. There is no evidence for this assumption; it is made to facilitate the presentation of the results and their comparison with those for other radicals.

Values for the rate constant for the attack of methyl radicals on acetophenone have been obtained from the rates of formation of methane and ethane found in the runs and the equation

$$
k_{4}=k_{5^{\frac{1}{2}}}\left(R_{\mathrm{MeH}} / R_{\mathrm{Me} \cdot \mathrm{Me}}{ }^{\frac{1}{2}}[\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{Me}]\right)
$$

k_{5} has been taken as $10^{13.35}$ mole ${ }^{-1} \mathrm{~cm} .^{3} \mathrm{sec}^{-1} .^{1}$ The results are plotted in Fig. 2 from which

$$
\log k_{4}\left(\mathrm{~mole}^{-1} \mathrm{~cm} .{ }^{3} \mathrm{sec} .^{-1}\right)=10 \cdot 7-(7400 / 2 \cdot 3 \boldsymbol{R} T)
$$

${ }^{1}$ Shepp, J. Chem. Phys., 1956, 34, 939.

Table 1.
Products of the photolysis of acetophenone.

Temp. (${ }^{\circ} \mathrm{K}$)	$\begin{gathered} 10^{6}[\mathrm{~A}] \\ \left(\text { mole } \mathrm{cm} . .^{-3}\right) \end{gathered}$	$\begin{aligned} & \text { Time } \\ & \text { (sec.) } \end{aligned}$	(10^{-12} mole c.c. ${ }^{-1} \mathrm{sec} .^{-1}$)						$\log k_{4}$
557	$1 \cdot 14$	120	114	38.2	0.838	0.729	$7 \cdot 89$	$24 \cdot 0$	$7 \cdot 433$
552	$1 \cdot 17$	120	120	$40 \cdot 7$	0.875	0.745	$7 \cdot 75$	$25 \cdot 0$	$7 \cdot 293$
549	$1 \cdot 17$	120	107	$35 \cdot 6$	$0 \cdot 667$	$0 \cdot 604$	$7 \cdot 29$	$19 \cdot 4$	$7 \cdot 319$
549	$1 \cdot 18$	120	$90 \cdot 9$	37-4	0.755	-	$15 \cdot 0$	$35 \cdot 8$	$7 \cdot 497$
553	$1 \cdot 39$	120	116	$42 \cdot 7$	0.859	0.818	$9 \cdot 37$	$21 \cdot 6$	$7 \cdot 331$
549	$1 \cdot 42$	120	$96 \cdot 1$	38.5	$0 \cdot 693$	0.585	$13 \cdot 4$	$22 \cdot 3$	$7 \cdot 469$
548	1.76	120	82.5	$37 \cdot 8$	$0 \cdot 516$	$0 \cdot 641$	12.5	$20 \cdot 8$	$7 \cdot 362$
550	1.78	120	-	$42 \cdot 5$	$0 \cdot 663$	$0 \cdot 886$	-	-	-
558	$2 \cdot 17$	120	-	$45 \cdot 3$	$0 \cdot 588$	0.990	-	-	-
550	$2 \cdot 57$	120	-	$37 \cdot 6$	$0 \cdot 466$	$0 \cdot 865$	-	-	
595	0.774	30	-	$69 \cdot 7$	$1 \cdot 53$	1.21			
597	$0 \cdot 792$	60	145	$64 \cdot 4$	$1 \cdot 47$	1.56	$15 \cdot 2$	$33 \cdot 9$	$7 \cdot 689$
592	0.965	60		$64 \cdot 7$	$1 \cdot 29$	$0 \cdot 82$	-	-	-
599	1.09	60	192	68.8	$1 \cdot 04$	$1 \cdot 63$	23.9	$34 \cdot 6$	7.741
597	$1 \cdot 32$	60	173	$77 \cdot 3$	1-22	$1 \cdot 43$	$23 \cdot 4$	$50 \cdot 5$	$7 \cdot 567$
599	$1 \cdot 41$	60	184	72	1.07	1.68	$24 \cdot 8$	$35 \cdot 3$	$7 \cdot 641$
597	$1 \cdot 72$	60	-	72	$1 \cdot 07$	1.71	-	-	-
602	2.01	60	189	93	1.07	$1 \cdot 24$	$30 \cdot 8$	26.7	$7 \cdot 642$
614	1.06	60	-	82.9	1.93	1.49	-	-	-
614	$1 \cdot 26$	60	199	$95 \cdot 4$	1.93	1.77	$35 \cdot 2$	$60 \cdot 2$	7.724
614	$1 \cdot 49$	60	198	105	1.89	2-18	$36 \cdot 0$	35.0	7.783
616	$1 \cdot 57$	60	195	97.9	$1 \cdot 49$	$2 \cdot 49$	$43 \cdot 1$	$79 \cdot 6$	$7 \cdot 658$
619	$2 \cdot 31$	60	-	111	$1 \cdot 33$		-	-	-
618	$2 \cdot 31$	60	-	99	$1 \cdot 28$	$2 \cdot 39$		-	
618	$3 \cdot 07$	70	257	119	$1 \cdot 45$	$2 \cdot 68$	31-1	44•8	$7 \cdot 665$
683	0.951	30	-	129	$1 \cdot 70$	$3 \cdot 13$	-	-	-
678	0.984	30	-	134	$2 \cdot 52$	3•13	-	-	
675	1.03	30	253	131	$2 \cdot 17$	$3 \cdot 35$	$40 \cdot 6$	$42 \cdot 7$	7.949
681	1.04	30	189	103	$2 \cdot 04$	$3 \cdot 35$	$38 \cdot 3$	$35 \cdot 5$	7.963
676	1.04	30	247	128	$2 \cdot 10$	$3 \cdot 07$	28.9	39•8	7-664
666	1.05	30	245	129	$2 \cdot 10$	$3 \cdot 50$	$57 \cdot 3$	$46 \cdot 7$	8.071
664	$1 \cdot 13$	30		130	$2 \cdot 08$	$2 \cdot 71$		-	-
666	$1 \cdot 14$	30	249	116	1.33	$2 \cdot 56$	51.2	$40 \cdot 2$	8.022
669	$1 \cdot 35$	30		135	$2 \cdot 00$	$3 \cdot 50$			
679	1.39	30	317	138	1.91	3.81	$67 \cdot 7$	$35 \cdot 6$	8.090
685	1.83	30	303	149	1.83	$4 \cdot 60$	$67 \cdot 4$	$43 \cdot 6$	7.917
671	1.92	30	235	118	0.99	$2 \cdot 77$	$54 \cdot 6$	26.8	7.909
684	3•16	60	298	163	$1 \cdot 02$	3:83	$76 \cdot 8$	$25 \cdot 0$	$7 \cdot 865$

[A] is the concentration of acetophenone.

Table 2.
The reaction of phenyl radicals with methane.

Temp. (${ }^{\circ} \mathrm{K}$)	[A]	$\left[\mathrm{CH}_{4}\right]$	Time	PhH	$\mathrm{Ph} \cdot \mathrm{Ph}$	$\mathrm{Ph} \cdot \mathrm{Me}$	
	(10^{-6} mole cm. ${ }^{-3}$)		(sec.)	(10^{-12} mole c.c. ${ }^{-1} \mathrm{sec} .^{-1}$)			$\log k$
561	$1 \cdot 16$	$2 \cdot 39$	120	$42 \cdot 7$	0.82	-	$7 \cdot 622$
561	$1 \cdot 17$	$3 \cdot 60$	120	$40 \cdot 3$	0.72	$0 \cdot 86$	$7 \cdot 623$
557	$1 \cdot 15$	$4 \cdot 19$	120	$38 \cdot 6$	0.72	0.74	7.511
557	$1 \cdot 17$	6.51	120	$39 \cdot 3$	$0 \cdot 68$	0.96	$7 \cdot 545$
600	1.08	$2 \cdot 76$	60	$73 \cdot 8$	$1 \cdot 36$	-	$7 \cdot 865$
599	1.09	$3 \cdot 84$	60	$75 \cdot 5$	$1 \cdot 34$	-	7.907
596	1.09	5.78	60	$72 \cdot 1$	$1 \cdot 20$	1.48	7.866
596	$1 \cdot 10$	$6 \cdot 46$	60	78	1.28	1.62	7.903
691	0.929	$1 \cdot 41$	30	146	$2 \cdot 06$	3-10	8.506
692	0.946	1.91	30	140	2.06	4-19	8.408
694	0.939	$3 \cdot 09$	35	146	2.02	$3 \cdot 77$	8.381
688	0.956	$3 \cdot 31$	30	146	$2 \cdot 10$	4-19	8.271
692	0.925	$5 \cdot 04$	30	151	1.79		$8 \cdot 467$
697	0.930	5•71	30	156	1.83	$3 \cdot 04$	8.425

[A] is the concentration of acetophenone.

The Reaction of Phenyl Radicals with Hydrocarbons.-When methane is added to the system, benzene is also formed by the reaction:

$$
\begin{equation*}
\mathrm{Ph}+\mathrm{MeH} \longrightarrow \mathrm{PhH}+\mathrm{Me} \tag{8}
\end{equation*}
$$

The rate of reaction of phenyl radicals with methane was calculated from the results in Table 2 after proper allowance had been made for the formation of benzene by abstraction of hydrogen from acetophenone. From rate constants plotted in Fig. 2, it is found that

$$
\log k_{8}\left(\mathrm{~mole}^{-1} \mathrm{~cm} . .^{3} \mathrm{sec} .^{-1}\right)=11 \cdot 9-(11100 / 2 \cdot 3 \boldsymbol{R} T)
$$

Fig. 1. The photolysis of acetophenone at 550°, $599^{\circ}, 615^{\circ}$, and 680° к.

Fig. 2. The reaction of methyl radicals with acetophenone (A) and of phenyl radicals with methane (B), cyclopropane (C), and isobutane (D)

Similar experiments were carried out with cyclopropane and isobutane. It can be seen from Fig. 2 that the results were less reproducible largely because of analytical difficulties. The activation energies and A factors are given in Table 3.

Table 3.
The reactions of phenyl and methyl radicals at 333°.
$\mathrm{Ph}+\mathrm{RH}=\mathrm{PhH}+\mathrm{R} ; \mathrm{Me}+\mathrm{RH}=\mathrm{MeH}+\mathrm{R}$.

RH	Phenyl			hyl				$\log \left(k_{\mathrm{Ph}} / k_{\mathrm{Me}}\right)$
	$\log A$	E	$\log k$	$\log A$	E	$\log k$	Ref.	
Methane	11.9	11•1	$7 \cdot 9$	11.8	$14 \cdot 7$	6.5	a	$1 \cdot 4$
Cyclopropane	11.4	$8 \cdot 5$	$8 \cdot 3$	11.0	$10 \cdot 3$	$7 \cdot 2$	b	$1 \cdot 1$
Isobutane ...	11.8	$6 \cdot 7$	$9 \cdot 4$	11.0	$7 \cdot 6$	$8 \cdot 3$	b	$1 \cdot 1$
Acetophenone	11.6	$6 \cdot 2$	$9 \cdot 4$	$10 \cdot 7$	$7 \cdot 4$	$8 \cdot 0$	c	$1 \cdot 3$

a, Dainton, Ivin, and Wilkinson, Trans. Faraday Soc., 1959, 55, 929; b, Trotman-Dickenson,
" Gas Kinetics," Butterworths, London, 1955; c, This work.
The strength of the $\mathrm{C}-\mathrm{H}$ bond in benzene can be found from the activation energy of reaction (8) and of the reverse reaction together with the known value of $D(\mathrm{Me}-\mathrm{H}) .^{2}$ The only determination ${ }^{3}$ of the activation energy of the reverse reaction ($9 \cdot 2 \mathrm{kcal} . / \mathrm{mole}$)

[^0]is not particularly reliable, but the activation energy for the attack of trifluoromethyl radicals has been twice determined (7.7 and $6.3 \mathrm{kcal} . / \mathrm{mole}$). ${ }^{4}$ The second determination appears to be a good one. The relation between the rate constants for the attack of methyl and of trifluoromethyl radicals on benzene is in line with that for attack on other compounds. ${ }^{5}$ The value of $9 \cdot 2 \mathrm{kcal}$./mole is, therefore, probably not in error by more than one or at most two kcal./mole. We therefore have
$$
D(\mathrm{Ph}-\mathrm{H})=103.9-(11 \cdot 1-9 \cdot 2)=102.0 \mathrm{kcal} . / \mathrm{mole},
$$

This value is in good agreement with values derived from the pyrolysis of phenyl bromide $(101.4 \mathrm{kcal} . / \mathrm{mole})$. The present derivation is based on the assumption that a methyl radical reacts by direct hydrogen abstraction and not by preliminary addition as does trifluoromethyl.

Table 3 shows that the reactivities of phenyl radicals with different substrates are parallel to those of methyl radicals. The existence of the parallelism does not depend upon the assumption that has been made that phenyl radicals combine on every collision, but the numerical relation does. If the high rate of combination is accepted then phenyl radicals are slightly less reactive than trifluoromethyl radicals.

A grant from the Esso Petroleum Co. is gratefully acknowledged.
Chemistry Department, Edinburgh University.
[Received, April 27th, 1962.]
${ }^{4}$ Pritchard, Pritchard, Schiff, and Trotman-Dickenson, Trans. Faraday Soc., 1956, 52, 849; Charles and Whittle, ibid., 1960, 56, 794.
${ }_{5}$ Trotman-Dickenson, Chem. and Ind., 1957, 1243.

[^0]: ${ }_{3}^{2}$ Fettis and Trotman-Dickenson, J., 1961, 3037.
 ${ }^{3}$ Trotman-Dickenson and Steacie, J. Chem. Phys., 1951, 19, 329.

